
Random Number Generators:

Introduction for Application Developers

Key material generation is as important to strong
cryptosystems as the algorithms used. Weak random
number generators (RNGs) have been known to create
key material that is guessable by adversaries1, making
the strength of the algorithms irrelevant in cryptographic
attacks. This paper, intended for application developers,
provides an overview of considerations developers
should be making when using RNGs, outlines how
RNGs work, and gives guidance for applications needing
RNG services.

Why Good RNGs Are Important
Consider an example system using 256-bit AES to
protect sensitive communications. Imagine these keys
are generated by selecting from a hard-coded list of four
possible values. If an attacker knows this list, then he

instead of the 2^256 guesses that should be required to
break the AES algorithm. This situation is equivalent to
using a weak RNG because an attacker can exhaust the
key space.

When designing a security product, there are many
situations in which “random” numbers are needed. We can
divide these situations into two classes – key material and
one-time numbers:

Key Material. Key material includes authentication keys
(RSA, DSA, ECDSA), key agreement parameters (DH
and ECDH), and encryption keys (3DES, AES, RSA). As
the example above indicates, the reason key material
needs a good RNG is to prevent guessing. So while an
incrementing counter may avoid repeats, an adversary can
guess the next output and, thus, guess the key material.

One-Time Numbers. One-time numbers include unique

vectors. With this class, the goal of using an RNG is not to
prevent guessing, but to avoid repeats. In these situations,
a predictable output, while not recommended, may be
acceptable.

What Makes Good RNG Output
Good RNGs produce bytes that are unpredictable. The
measurement of this unpredictability is called “entropy.”
Good RNGs are guaranteed to produce outputs with as
much entropy as requested - that is, in a sequence of

services should request as much entropy as the security
strength2 of the algorithm.

How a Good RNG Works
A good RNG usually has three pieces – (1) noise
source(s), (2) optional conditioning block, and (3)
deterministic random bit generator (DRBG). The RNG
should be designed and provided by the hardware or
operating system rather than being implemented by
application developers.

Noise
Source

Noise
Source

Conditioning DRBG

Where to Get Good RNG Services
Generally, application developers should rely on the
platform to provide the RNG. The platform RNG should
have both its noise sources and DRBG validated to
provide application developers assurance as to the

the following page gives recommendations for developers
based on the validation status of the platform.

Interim Guidance
As many platforms do not have validated sources or
DRBGs, the following per-platform guidance should be
followed until validation occurs:

March 2014

1 Durumeric, Z., Halderman, J., Heninger, N., Wustrow, E. “Mining Your Ps and

Qs: Detection of Widespread Weak Keys in Network Devices.” In Proc. 21st

USENIX Security Symposium, Aug 2012. Rev. 2.

2

describes security strength and gives the strengths for various algorithms.

Microsoft Windows Desktop Applications
(since Windows XP, Windows Server 2003):
Application developers should use the
CryptGenRandom function for cryptographic RNG
services. http://msdn.microsoft.com/en-us/library/
aa923614.aspx

 Microsoft Windows Store Apps
(since Windows 8, Windows Server 2012):
App developers should use the
CryptographicBuffer.GenerateRandom
method for cryptographic RNG services.
http://msdn.microsoft.com/en-us/library/
windows/apps/windows.security.cryptography.
cryptographicbuffer.generaterandom

Blackberry (since BlackBerry 10):
Application developers should use the RngGetBytes
function with either the ANSI X9.31 AES RNG or one

strength for cryptographic RNG services.
http://developer.blackberry.com/native/reference/
core/com.qnx.doc.crypto.lib_ref/topic/hu_
rnggetbytes.html

Apple iOS (since iOS 2.0):
Application developers should use the
SecRandomCopyBytes function with the
kSecRandomDefault random number generator
for RNG services.
https://developer.apple.com/library/
ios/docuemntation/Security/Reference/
RandomizationReference/Reference/reference.html

Unix-like Platforms (e.g. Linux, Android, and Mac OS X):
Application developers should use the fread
function to read random bytes from /dev/random
for cryptographic RNG services.
Because /dev/random is a blocking device,
/dev/random may cause unacceptable delays,
in which case application developers may prefer
to implement a DRBG using /dev/random as a
conditioned seed. Application developers should use
the “Random Number Generators: Introduction for
Operating System Developers” guidance in developing
this solution.
If /dev/random still produces unacceptable delays,
developers should use /dev/urandom which is a
non-blocking device, but only with a number of
additional assurances:
- The entropy pool used by /dev/urandom must be
saved between reboots.
- The Linux operating system must have estimated that
the entropy pool contained the appropriate security
strength entropy at some point before calling
/dev/urandom. The current pool estimate can be read
from /proc/sys/kernel/random/entropy_avail.

/dev/urandom
before the developer must ensure that new entropy was
added to the pool.

March 2014

Use platform
sources &

implement NIST
DRBG

Use
platform RNG

Interim
Guidance

Validation Status Flowchart

No

Yes

Yes Yes

No

Validated
platform
DRBG?

API to use
sources?

Validated
platform
sources?

No

